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m 2 W - t. It is interesting to note that the final values measured 
were of the same order of magnitude as the corresponding 
values suggested by the results of Bakulin, et al. [7], Sakhuja 
and Rohsenow [6] and Wilcox and Rohsenow [10]. 

5. CONCLUSIONS 

The above theory points strongly to the presence of a wall- 
condensate interface resistance or resistive layer on the nickel 
condenser surfaces during experiments with condensingliquid 
metals. Further, preliminary experimental measurements of 
this resistance tend to support this theory. The authors at this 
stage makeno attempt to explain why such a resistance, or 
possibly a resistive layer, should exist but merely suggest that 
all the facts point to the presence of such a phenomenon in 
liquid metal condensation experiments. 
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NOMENCLATURE 

O, 

a 0 , 

D, 
Dr, 
E, 
Etr, 
F, 

kGS, 
L s , 
N, 

concentration of diffusing species; 
concentration of diffusing species far from 
interface; 
gas diffusivity; 
diameter of slug; 
enhancement of diffusive flux due to crossflow; 
as E but for transpiration ; 
fraction of additive flux contributed by diffusion 
only; 
transfer coefficient for slugs due to diffusion only; 
length of slug; 
instantaneous flux of diffusing species across 
interface ; 

Na,(cross ), average flux of diffusing species across interface 
due to crossflow only; 

Na,(diff+cross), average flux of diffusing species across 
interface accounting for interaction between 
diffusion and crossflow; 

N'~,(difl), purely diffusive average flux with random surface 
renewal, ao(Ds) t12 ; 

N~,(diff+ cross), average flux at the interface with random 
surface renewal, accounting for interaction 
between diffusion and crossflow ; 

p, variable of the Laplace transfnrm domain ; 

Q, 

R, 

R r , 

s, 

t, 
T,. 
U, 

Umf~ 
v, 

X, 
W, 

Z, 

overall transfer coefficient between slug and 
dense phase; 
ratio between exact value ofaverage flux and the 
sum of fluxes due to diffusion only and crossflow 
only; 
as R but with random surface renewal ; 
rate of surface renewal; 
time; 
dimensionless time, r2t/D ; 
component of gas velocity tangent to bubble 
surface; 
minimum fluidizing velocity; 
fluid velocity perpendicular to the interface ; 
dimensionless distance from interface, xr/D; 
dummy variable; 
dummy variable. 

Greek symbols 
% dimensionless concentration, ( a -  ao)/a o; 
~, Laplace transform of~t; 
0, dimensionless time of contact, v2/(Ds). 

Subscripts 
av, average; 
O, far from interface; 
s, refers to slug. 
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I N T R O D U C T I O N  

TIlE CLASSICAL theory of Higbie may be used to predict the 
mass  transfer coefficient at an  interface in situations such as 
Ihat depicted in Fig. l(a); at t = 0 a fresh element of fluid I is 
brought into contact with the interface and the concentration, 
a, of  the transferred component  A undergoes a step change at 
x = 0. (The step change considered is from a o to 0 as would be 
the case if A were consumed by an instantaneous irreversible 
process.) As time goes on the concentration profile in fluid I 
changes and for equimolar counterdiffusion or for very dilute 
mixtures 

~2a ?a 

D Ox 2 ~t (1) 

holds with 

t = 0 x < 0  

t > 0 x = 0  

t > Ox --*--o0 

a = ao, 

a = O, (la) 

( / = a  O. 

The instantaneous flux across the interface, N, varies with time 
according to 

N = --D(g-~ a )  = ao(D/nt) ''2. (2) 
\Ox /~  = o 

If the process of transfer is interrupted after a time t (by 
taking away the fluid element from the interface), the average 
flux over that period is given by 

N~,(diff) = (I/t) N dt = ao(4D/rct) tt2. (3) 

The process that interests us here is similar to that described 
above, except that the fluid has  a permeation velocity 
component  v (perpendicular to the interface) superimposed on 
the velocity component  along the interface. This situation 
might be realised in practice by means of a porous plate, under 
suction, suddenly exposed to the gas mixture with reactant A 
being instantly consumed at the contact of the porous matrix 
(e.g. a catalyst). A similar process may  be expected to be at 
work near the bubble surface in a fluidized bed, as described 
later. 

In Fig. l(b), the evolution of the concentration profile is 
depicted and the dashed area corresponds to the penetration 
of fluid into the porous wall. It is readily understood that if the 
suction process goes on for a sufficiently long time it ~ no), the 
concentration profile tends to a limiting configuration such 
that the flux ofA a cross the interface is given by Na, (crossflow) 
= va o ; this corresponds to the solution of 

dZa da 
o F = ~,~ (4,j 

with 

�9 =0 } , a = 0 ,  ( 4 a )  
x---, - e o ,  a = a o. 

This flux is that resulting simply from the crossflow. 
In the case of transpiration (negative suction) it is obvious 

that the flux due to crossflow is nil. 

PENETRATION TIIEORY WlTll 
SUCTION AT TilE WALL 

The exact solution of the problem of diffusion with crossflow 
corresponding to the situation in Fig. l(b) at all times is 
considered next. A material balance on a differential slice with 
faces parallel to the interface gives 

g2a ga ga 

D~-x "2 - Vt3x - gt (5) 

and the initial and boundary conditions are 

t = 0  x < 0  a = a 0 ,  

t > 0  x = 0  a = 0 ,  (5a) 

t > 0  x ~ - o o  a = a  o. 

FQr constant  v, the dimensionless variables = = (a-an)/an,  
X = vx/D and T = v2t/D may be defined. Then equations (5) 
and (5a) reduce to 

t32:t &t g= 
(6) 

~ X  2 ~ X  ~ T  
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Fro. 1. Concentrat ion profiles for transient diffusion; (a) Diffusion only;  (b) Diffusion with suction. 
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with 

T = 0 ,  X < 0 ,  c t = 0 ,  

T > 0 ,  X = 0 ,  ~t = - 1 ,  (6a) 

T > 0 ,  X - - - , - - ~ ,  7 = 0 .  

Laplace transforms may be used to solve equation (6) as 
shown in the Appendix and the result is 

( a - a o ) / a  o = o: = - E2/(rrll2)] I ~ 
d- (X I2T  t/2) 

x eX/2e-X~/lte:2)e-Z2 dz  (7) 

and the instantaneous flux at the interface 

N = --D(d~a~ d~t 
\ ~ x  /,,= o = -- rao(-~-X)x = o 

may be obtained as 

N = aor[ ( l /2 )+e- r l4 / (nT) l l '+( I /2 )e r f (T l lZ /2 ) ] .  (8) 

It may be seen that equation (8) reduces to 

N = ao[D/(nt)] al2 

for low values of T and to N = rao for high T as expected. In 
practice it is important to know the average flux over a period 
of time t as given by 

Io N,,, = (I/t) g d t  = (I/T) N d r  

and this is 

N,,(diff+ cross) = (aov) 

x [(1/2) + e -  r/*/(r~T) u2 + [�89 + (l/T)]erf(Ta/2/2)]. (9) 

It is interesting to compare this value of the exact average 
flux with the approximate value obtained by simply adding the 
value for diffusion alone N,,(diff) = 2vao/(nT) tl2 with that for 
crossflow alone N,v(cross)= rao. This may be done by 
defining the ratio 

R = N,v(d i f f+cross ) l [N, , (d i f f )+N, , (cross )]  

= [(T/2) + (T/it) tlz e -  7"/,* + [- 1 + (T/2)] 

x er f (T l l2 /2 ) ] / [T+ 2(T/n)tl2].  (10) 

Table 1. The effect of crossflow on rate of transfer 

T 0.04 0.16 0.36 0.64 1.00 1.96 4.00 9.00 36.0 100 
E 1.09 1.19 1.29 1.41 1.52 1.78 2.19 2.95 5.50 8.95 
R 0.93 0.88 0.85 0.82 0.81 0.79 0.79 0.81 0.86 0.91 
R' 1.08 1.12 1.15 1.14 1.14 1.11 1.08 1.04 1.00 1.00 
F 0.85 0.74 0.65 0.59 0.53 0.45 0.36 0.27 0.16 0.10 
Err 0.91 0.84 0.76 0.70 0.64 0.54 0.42 0.29 0.15 0.09 

The dependence of R on T is shown in Table 1 and Fig. 2. A 
slightly more complicated approximate expression for the 
average flux is 

N~, = [N,Z,(diff)+N2,(cross)] ~/z (lOa) 

and the corresponding ratio 

R' = Nav(diff +cross) lN;  v (10b) 

is shown in Table 1 and Fig. 2 to be closer to unity than R. Also 
shown are the values of the fractional contribution ofdiffusion, 
F, in the approximate additive flux as given by 

F = N, , (d i f f ) / [N, , (d i f f )  + N,~(cross)] 

= [l+(r~TI4)tl2] -1. (11) 

The existence ofcrossflow enhances the rate of mass transfer 
and the extent of this enhancement is given by the ratio 

E = I-N,,(diff+ cross)/N,,(diff)] 

= (nT/16) t l2+�89  -r14 

+[(nT/16) t /2  +(n /4T)U2]er f (T t l2 /2)  (12) 

values of which are also shown in Table 1 and Fig. 2. 

PENETRATION TIIEORY WITII 
TRANSPIRATION AT TIlE WALL 

For the sake of completeness it is interesting to consider the 
case where gas is blown through the wall (transpiration), while 
diffusion takes place, thus reducing the rate of mass transfer. If 
gas is blown steadily at a constant rate, equation (5) still 
applies, but with negative v. For the same initial and boundary 
conditions (5a) the expressions for the concentration profile, 
equation (7), for the instantaneous flux, equation (8), and for 
the average flux, equation (9), still hold if it is remembered that 
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FIG. 2. The effect of suction on the rate of mass transfer; R, given by equation (10); R', given by equation (10b); 
F, given by equation (11); E, given by equation (12) with positive v (suction); E,t, given by equation (12) with 

negative v (transpiration). 
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te>t l  1 

FIG. 3. Trajectory of fluid element near bubble surface. 

T ~/2 = r(t/D) ~12 is always negative and X = vx/D is always 
positive. 

I n the present case the pure crossflow contribution is nil and, 
therefore, only the ratio Err between the average flux and the 
flux corresponding to diffusion only is of interest and is given in 
Fig. 2 and Table 1. 

MASS TRANSFER ACROSS TIlE 
BUBBLE SURFACE IN FLUIDIZED BEDS 

The details of gas flow in the neighbourhood ofthesurface of 
a bubble (or slug) in a fluidized bed are well understood [1, 2]. 
As shown in Fig. 3, the gas velocity may be seen as the sum of a 
tangential component along the slug surface, u (of magnitude 
equal to the velocity of the particles) and a normal component 
corresponding to Darcy flow, t'. The value of this component 
just inside the bubble varies from a maximum near the nose (3 
Umf for spherical cap bubbles and 2 Umf for slugs) down to zero 
(and eventually negative values) near the wake. 

The usual assumption in the derivation of mass transfer 
coefficients for gas bubbles and slugs in liquids is that of 
uniform mixing of the gas inside the bubble except for a thin 
layer near the interface with fresh elements continually taken 
to the bubble nose and driven down the interface; mass 
transfer occurs along this descending path at a rate predicted 
by the penetration theory. In fluidized beds, the wall of the 
bubble is permeable and in the case of very fast reaction in the 
particulate phase the situation for each element ofgas may be 
depicted as in Fig. 3. This is very similar to the situation 
described by equation (5) with boundary conditions (5a). Two 
important differences arise in that v varies along the bubble 
surface and therefore for any gas element v decreases with time 
and also each gas element stretches as it slides along the bubble 
surface. Under these circumstances a lengthy numerical 
procedure is required to account for the interaction between 
diffusion and crossflow and this is being considered at present 
by the authors. The solution given by equation (7) may help 
eliminate the initial discontinuity during the process of 
numerical computation. 

The rate of mass transfer from slugs (or bubbles) in fluidized 
beds may be expressed as 

n = Q(Cb-Cp) (13) 

where n is the molar rate of transfer, Ct, and Cp are the 
concentrations of transferred component inside the bubble 
and in the particulate phase respectively an.d Q is the transfer 
coefficient. Hovmand and Davidson [3] developed two 
simplified theories to predict the value of Q for slugs in 
fluidized beds. In the "approximate theory' the value of Q was 
assumed to be simply the sum of the purely diffusive 
component (kc, S) corresponding to slugs in liquids and the 
crossflow component {U=fnD~/4). In the other the interaction 

between diffusion and crossflow was accounted for, although 
based on some simplifying assumptions. Matsen [4] made a 
comparative study of the predictions of the two theories with 
regard to the effect of crossflow on the overall rate of mass 
transfer. He considered a slug with length Ls = 0.60 m and 
diameter D s = 0.14 m and studied the effect of variation of 
Umf on the rate of transfer of a component with diffusivity 
D = 0.565 x 10 -4 m z s -  t. For the purpose ofour  discussion 
his results are best plotted as shown in Fig. 4, where E, the 
enhancement factor, represents the ratio between the actual 
transfer coefficient and that corresponding to no crossflow 
(Umr = 0). It may be seen that the line corresponding to the 
'approximate theory' follows the trend predicted in Fig. 2 for 
the effect of crossflow. On the other hand the theory 
accounting for the interaction between crossflow and diffusion 
leads to unexpected conclusions; according to this theory it 
would seem that increased crossflow leads initially to 
decreased transfer rates (E < 1). This is at variance with the 
conclusions shown in Fig. 2 and is probably the result of 
neglecting diffusion along the streamlines in the derivation of 
the theory [3]. Experimental data on mass transfer from slugs 
with reaction in tile dense phase are available from fluidized 
bed reactor studies. However, entrance effects are generally 
important and the resulting transfer data for slugs are not very 
accurate. It is nevertheless noteworthy that in the most 
extensive study of slugging reactors [3] the experimental 
values of conversion are shown to fall closer to the predictions 
of the 'approximate theory'. The present study seems to 
suggest that the predictions of the 'approximate theory' 
although higher than the exact values should not be in error by 
more than 20% and therefore may be used with reasonable 
confidence. 

A probably better approximation to the transfer coefficient 
is Q = [(koS)Z+(UmtnD2/4)2] u2 as suggested by a com- 
parison of the ratios R and R' as given in Table 1 [from 
equations (10) and (10b)]. The coefficient Q predicted in this 
way is not likely to deviate from the exact value by more than 
15% and also it should lead to conservative estimates of 
conversion. 

CONCLUSIONS 

The exact solution (derived under appropriate boundary 
conditions) for the process of transient diffusion with suction 

1.5 [ I  f /  

IO 
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0 5  
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0 i0 30 50 

Umf , m m  s - I  

Fit;,. 4. The effect of crossflow (Umf) on mass transfer from a 
slug (L I = 0.60 m ; D, = 0.14 m ; D = 0.565 x 10 -4  m 2 s -  1), 
- - - - - -  'approximate theory' [3]; Q =k~S+UmtnD~/4,  

simplified theory accounting for interaction [3]. 
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at the interface predicts values for the average flux not greatly 
different from those obtained by mere addition of diffusive and 
convective fluxes. This result lends support to one of the 
available theories for mass transfer from bubbles (or slugs) in 
fluidized beds; the inaccuracy ofan alternative theory for mass 
transfer from slugs is also put in evidence. 
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APPENDIX 

DIFFUSION WITII SUCTION AT TIlE WALL 

The variables ~z = (a-ao) /ao,  X = vx/D and T = v2t/D 
were defined previously and the Laplace transform of(6) with 
boundary conditions (6a) is 

d2~ d~ 
p~ (A1) 

dX 

where 

~ = - - P - I "  X = O ' _  } (Ala) 
~ 0  , X - - *  oo. 

= .Io c~e-~' dt. (A2) 

The solution of equation (A1) with conditions (Ala) is 

= _ p -  t e(X/2~[o +(,*p+ tP,~I. (A3) 

This may be re-written as 

= _ eX12 { e xlp + (, t*~l',2/[p + ( 1/4)] } 

--(1/4p)eX12{eXU'+(l14)l"~/[p+(l/4)]} (A4) 

and making use of tables of transforms, inversion gives 

= - e x12 e -  r14 e r f c [ -  X/(2Ttl2)]  

- � 8 8  eX/2e-~l*er fc[-X/(2z t /2I]dz .  (A5) 

The second term on the RHS may be calculated by parts and 
after a change of dummy variable w = - X / ( 2 z  ~12) there 
results 

f- 
~ = - ( 2 / n  t/2) e -X~at6~%-~ 'e  x/2 dw. (A6) 

J -(XI2TII21 

RANDOM SURFACE RENEWAL 

The average fluxes calculated above correspond to the 
situations where all surface elements stay at the surface for the 
same amount of time, t. It may be of interest to find out the 
average flux in a situation for which the distribution of contact 
times is random. In that case the average flux is [5, 6] 

N~v = J ~  Ns  e-~, dt 

where the superscript r refers to random surface and s 
measures the rate of surface renewal. 

If there is suction at the wall equation (8) gives the 
instantaneous flux and integration gives 

N~v(diff+ cross) 

= (ao~'){(1 + 014)-112[(0112/4)+(1/0tl2)]-I "-/} (A8) 

where 

0 = v2/(Ds). 

The ratio R' between the exact solution for the average flux, 
equation (AS), and the sum of the crossflow flux N (cross) 
= a o v  and the purely diffusive flux N~v (diffusion) = ao(Ds) t/2 
may again be formed. The values of R r are tabulated as a 
function of 0 in Table 2. 

Table 2. Values of R r 

0 10 -a  10 -2 10 - l  I 4 6 10 102 103 
R f 0.98 0.96 0.88 0.81 0.80 0.82 0.83 0.92 0.97 


